top of page
Journal Publications
List of peer-reviewed journal articles
TOC Graphic.jpg
TOC.png
Picture1.png
TOC-2.2.png
TOC Graphic.jpg

2024

44. Experimental screening of intermetallic alloys for electrochemical CO2 reduction
D. van den Berg, J.C. Brouwer, R.W.A. Hendrikx, R. Kortlever, Catalysis Today, 2024, 114805.

DOI: doi.org/10.1016/j.cattod.2024.114805
43. Electrochemical CO2 reduction on a copper foam electrode at elevated pressures
N. Girichandran, S. Saedy, R. Kortlever, Chemical Engineering Journal, 2024, 487, 150478.

DOI: doi.org/10.1016/j.cej.2024.150478
42. Challenges and opportunities for CO2 electroreduction from a process systems engineering perspective
R. Dal Mas, A. Somoza-Tornos, M. Perez-Fortes, R. Kortlever, A.A. Kiss, Frontiers in Energy Research, 2024, 12, 1340622.

DOI: doi.org/10.3389/fenrg.2024.1340622
41. Towards Higher NH3 Faradaic Efficiency: Selective‐poisoning of HER Active Sites by Co‐feeding CO in NO Electroreduction
M. Li, S. Saedy, S. Fu, T. Stellema, R. Kortlever, J.R. van Ommen, Catalysis Science & Technology, 2024, 14, 1328-1335.

DOI: doi.org/10.1039/D3CY00996C
40. The effect of surface conditions on the electrochemical CO2 reduction performance of bimetallic AuPd electrocatalysts
D. Van den Berg, B. Izelaar, S. Fu, R. Kortlever, Catalysis Science & Technology, 2024, 14, 555-561.

DOI: doi.org/10.1039/D3CY01411H
1-s2.0-S2542435123004476-gr2_lrg.jpg
1-s2.0-S1385894723049008-ga1_lrg.jpg
TOC.png
TOC.gif
TOC.jpg
20230322 TOC-SF.tif
TOC.tif
TOC.png
TOC.png
20220422 TOC.tif
Abstract_graphic_v2.tiff

2023

39. Electrochemical CO2 capture can finally compete with amine-based capture
D.A. Vermaas, R. Kortlever, Joule, 2023, 7, 2426-2429.

DOI: doi.org/10.1016/j.joule.2023.10.018
38. Optimization and continuous-flow operation of electrochemically mediated selective formate separation by polyvinyl ferrocene/graphene oxide electrodes
S. Polat, R. Kortlever, H.B. Eral, Chemical Engineering Journal, 2023, 475, 146169.

DOI: doi.org/10.1016/j.cej.2023.146169
37. Towards Higher NH3 Faradaic Efficiency: Selective‐poisoning of HER Active Sites by Co‐feeding CO in NO Electroreduction
M. Li, J. Verkuil, S. Bunea, R. Kortlever, A. Urakawa, ChemSusChem, 2023, e202300949.

DOI: doi.org/10.1002/cssc.202300949
36. Identification, Quantification, and Elimination of NOx and NH3 Impurities for Aqueous and Li-Mediated Nitrogen Reduction Experiments
B. Izelaar, D. Ripepi, D.D. van Noordenne, P. Jungbacker, R. Kortlever, F.M. Mulder, ACS Energy Letters, 2023, 8, 3614-3620.

DOI: doi.org/10.1021/acsenergylett.3c01130
35. Electrochemical cell design and performance evaluation of polyvinyl ferrocene/carbon nanotube electrodes for selective formate separation
S. Polat, R. Kortlever, H.B. Eral, Seperation and Purification Technology, 2023, 324, 124554.

DOI: doi.org/10.1016/j.seppur.2023.124554
34. Tuning the Properties of N-Doped Biochar for Selective CO2 Electroreduction to CO
S. Fu, M. Li, W. de Jong, R. Kortlever, ACS Catalysis, 2023, 13, 10309-10323.

DOI: doi.org/10.1021/acscatal.3c01773
33. A Quantitative Analysis of Electrochemical CO2 Reduction on Copper in Organic Amide and Nitrile-Based Electrolytes
A.S. Kumar, M. Pupo, K.V. Petrov, M. Ramdin, J.R. van Ommen, W. de Jong, R. Kortlever, Journal of Physical Chemistry C, 2023, 127, 12857-12866.

DOI: doi.org/10.1021/acs.jpcc.3c01955
32. Design of an elevated pressure electrochemical flow cell for CO2 reduction
A.R.T. Morrison
, N. Girichandran, Q. Wols, R. Kortlever, Journal of Applied Electrochemistry, 2023, 1-10.

DOI: doi.org/10.1007/s10800-023-01927-7
31. Electrochemical CO2 Reduction on Copper in Propylene Carbonate: Influence of Water Content and Temperature on the Product Distribution
I. Burgers, E. Perez-Gallent, E. Goetheer, R. Kortlever, Energy Technology, 2023, 2201465.

DOI: doi.org/10.1002/ente.202201465
30. Unravelling the Effect of Activators used in The Synthesis of Biomass‐Derived Carbon Electrocatalysts on the Electrocatalytic Performance for CO2 Reduction
S. Fu, M. Li, S. Asperti, W. de Jong, R. Kortlever, ChemSusChem, 2023, e202202188.

DOI: doi.org/10.1002/cssc.202202188
29. Revisiting the electrochemical nitrogen reduction on molybdenum and iron carbides: Promising catalysts or false positives?
B. Izelaar, D. Ripepi, S. Asperti, A.I. Dugulan, R.W.A. Hendrikx, A.J. Bottger, F.M. Mulder, R. Kortlever, ACS Catalysis, 2023, 13, 1649-1661.

DOI: doi.org/10.1021/acscatal.2c04491
TOC Ming.png
28. Nanostructuring Pt-Pd bimetallic electrocatalysts for CO2 reduction using atmospheric pressure atomic layer deposition
M. Li, S. Fu, S. Saeedy, A. Rajendrakumar, F.D. Tichelaar, R. Kortlever, J.R. van Ommen, ChemCatChem, 2022, e202200949.

DOI: doi.org/10.1002/cctc.202200949
Boor TOC.png
27. Electrochemical reduction of CO2 to Oxalic Acid: Experiments, process modeling, and economics
V. Boor, J.E.B.M. Frijns, E. Perez-Gallent, E. Giling, A.T. Laitinen, E.L.V. Goetheer, L.J.P. van den Broeke, R. Kortlever, W. de Jong, O.A. Moultos, T.J.H. Vlugt, M. Ramdin, Industrial & Engineering Chemistry Research, 2022, 61, 14837-14846.

DOI: 10.1021/acs.iecr.2c02647
TOC.jpg
26. Ultrasound-promoted preparation of polyvinyl ferrocene-based electrodes for selective formate separation: Experimental design and optimization
S. Polat, R. Kortlever, H.B. Eral, Ultrasonics Sonochemistry, 2022, 89, 106146.

DOI: 10.1016/j.ultsonch.2022.106146
TOC figure.png
25. Surface coverage as an important parameter for predicting selectivity trends in electrochemical CO2 reduction
A.R.T. Morrison, M. Ramdin, L.J.P. van den Broeke, W. de Jong, T.J.H. Vlugt, R. Kortlever, Journal of Physical Chemistry C, 2022, 126, 29, 11927-11936.

DOI: 10.1021/acs.jpcc.2c00520
TOC.tif
24. Benchmarking the electrochemical CO2 reduction on polycrystalline copper foils: The importance of microstructure versus applied potential
S. Asperti, R. Hendrikx, Y. Gonzalez-Garcia, R. Kortlever, ChemCatChem, 2022, e202200540.

DOI: 10.1002/cctc.202200540
Graphical abstract.png
23. Effect of different alkali metal cations on the oxygen evolution activity and battery capacity of nickel electrodes in concentrated hydroxide electrolytes
A. Mangel Raventos, R. Kortlever, Electrochimica Acta, 2022, 415, 140255.

DOI: 10.1016/j.electacta.2022.140255

2021

TOC.jpeg
22. Electroreduction of CO2/CO to C2 products: Process modeling, downstream separation, system integration and economic analysis
M. Ramdin, B. De Mot, A.R.T. Morrison, T. Breugelmans, L.J.P van den Broeke, J.P.M. Truslers, R. Kortlever, W. De Jong, O.A. Moultos, P. Xiao, P.A. Webley, T.J.H. Vlugt, Industrial & Engineering Chemistry Research, 2021, 60, 17862-17880.

DOI: 10.1021/acs.iecr.1c03592
Graphical abstract.png
21. Sn-Based electrocatalyst stability: A crucial piece to the puzzle for the electrochemical CO2 reduction to formate
K. Van Daele, B. De Mot, M. Pupo, N. Daems, D. Pant, R. Kortlever, T. Breugelmans, ACS Applied Energy Letters, 2021, 6, 4317-4327.

DOI: 10.1021/acsenergylett.1c02049
Graphic for manuscript.tif
20. Modeling the performance of an integrated battery and electrolyzer system
A. Mangel Raventos, G. Kluivers, J.W. Haverkort, W. de Jong, F.M. Mulder, R. Kortlever, Industrial & Engineering Chemistry Research, 2021, 60, 10988-10996.

DOI: 10.1021/acs.iecr.1c00990
TOC Elizabeth.png

2020

19. In Situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode
E.R. Corson, R. Kas, R. Kostecki, J.J. Urban, W.A. Smith, B.D. McCloskey R. Kortlever, Journal of the American Chemical Society, 2020, 142, 11750-11762.

DOI: 10.1021/jacs.0c01953
figure 1 beta.tif
18. Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect?
R. Kas, K. Yang, D. Bohra, R. Kortlever, T. Burdyny, W.A. Smith, Chemical Science, 2020, 11, 1738-1749.

DOI: 10.1039/C9SC05375A
TOC Figure.png

2019

17. Electrolyte effects on the electrochemical reduction of CO2
M.M.S. Pupo, R. Kortlever, ChemPhysChem, 2019, 20, 2926-2935.
DOI: 10.1002/cphc.201900680

2017

16. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives
Z. Han†, R. Kortlever†, H.-Y. Chen, J.C. Peters, T. Agapie, ACS Central Science, 2017, 3, 853-859.

DOI: 10.1021/acscentsci.7b00180
15. Local structure and composition of PtRh nanoparticles produced through cathodic corrosion
T.J.P. Hersbach, R. Kortlever, M. Lehtimäki, P. Krtil, M.T.M. Koper, Physical Chemistry Chemical Physics, 2017, 19, 10301-10308.
DOI: 10.1039/C7CP01059A
14. Gastight hydrodynamic electrochemistry: design for a hermetically sealed rotating disk electrode cell
S. Jung, R. Kortlever, R.J.R. Jones, M.F. Lichtermann, T. Agapie, C.C.L. McCrory, J.C. Peters, Analytical Chemistry, 2017, 89, 581-585.
DOI: 10.1021/acs.analchem.6b04228

2016

13. Iridium-based double perovskites for efficient water oxidation in acid media
O. Diaz-Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk, J. Gascon, W.T. Fu, M.T.M. Koper, Nature Communications, 2016, 7, 12363.
DOI: 10.1038/ncomms12363
12. Stabilization of a ruthenium photosensitizer for photocatalytic water oxidation in a liposome bilayer
B. Limburg, J. Wermink, S. van Nielen, R. Kortlever, M.T.M. Koper, E. Bouwman, S. Bonnet, ACS Catalysis, 2016, 6, 5968-5977.
DOI: 10.1021/acscatal.6b00151
11. Oxidation reactions in chromium (III) formate electrolytes at platinum and at a
catalytic mixed metal oxide coating of iridium oxide and tantalum oxide
J.O.H.J. Wijenberg, A.C.A. de Vooys, R. Kortlever, M.T.M. Koper, Electrochimica
Acta
, 2016, 213, 194-200.
DOI: https://doi.org/10.1016/j.electacta.2016.07.084
10. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons
R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon, G. Mul, M.T.M. Koper,
Chemical Communications, 2016, 52, 10229-10232.
DOI: 10.1039/C6CC03717H
9. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction
R. Kas, K. Khazzal Hummadi, R. Kortlever, P. de Wit, A. Milbrat, M.W.J. Luiten-Olieman, N. E. Benes, M.T.M. Koper, G. Mul, Nature Communications, 2016, 7,10748.
DOI: 10.1038/ncomms10748

2015

8. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards
CO
2 reduction
J. Monzó, Y. Malewski, R. Kortlever, F. J. Vidal-Iglesias, J. Solla-Gullón, M.T.M. Koper, P. Rodriguez, Journal of Materials Chemistry A, 2015, 3, 23690-23698.
DOI: 10.1039/C5TA06804E
7. Reaction pathways and catalysts for the electrochemical reduction of carbon dioxide
R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Journal of Physical Chemistry Letters, 2015, 6, 4073-4082. (featured on the front cover of
the issue)
DOI: 10.1021/acs.jpclett.5b01559
TOC Article 6.PNG
6. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin
J. Shen, R. Kortlever, R. Kas, Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanes, K.J.P. Schouten, G. Mul, M.T.M. Koper, Nature Communications, 2015, 6, 8177.
DOI: 10.1038/ncomms9177
TOC Article 5.PNG
5. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon supported bimetallic Pd-Pt nanoparticles
R. Kortlever, I. Peters, S. Koper, M.T.M. Koper, ACS Catalysis, 2015, 5, 3916-3923.
DOI: 10.1021/acscatal.5b00602
ToC picture.png
4. Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst
R. Kortlever, C. Balemans, Y. Kwon, M.T.M. Koper, Catalysis Today, 2015, 244, 58-62.
DOI: 10.1016/j.cattod.2014.08.001
TOC Article 3.jpg
3. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions
R. Kas, R. Kortlever, H. Yilmaz, M.T.M. Koper, G. Mul, ChemElectroChem, 2015, 2, 354-358.
DOI: 10.1002/celc.201402373

2014

TOC Article 2.PNG
2. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons
R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, Physical Chemistry Chemical Physics, 2014, 16, 12194-12201.
DOI: 10.1039/C4CP01520G

2013

TOC.png
1. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media
R. Kortlever, K.H. Tan, Y. Kwon, M.T.M. Koper, Journal of Solid State Electrochemistry, 2013, 17, 1843-1849.
DOI: 10.1007/s10008-013-2100-9

2022

bottom of page