top of page
Journal Publications
2025

51. The effect of carbon supports on the electrocatalytic performance of Ni-N-C catalysts for CO2 reduction to CO
S. Fu, B. Izelaar, M. Li, Q. An, M. Li, W. de Jong, R. Kortlever, Nano Energy, 2024, 133, 110461.
DOI: doi.org/10.1016/j.nanoen.2024.110461











2024
50. Techno-economic assessment of different small-scale electrochemical NH3 production plants
B. Izelaar, M. Ramdin, A. Vlierboom, M. Pérez-Fortes, D. van der Slikke, A.S. Kumar, W. de Jong, F.M. Mulder, R. Kortlever, Energy & Environmental Science, 2024, 17, 7983-7998.
DOI: doi.org/10.1039/D4EE03299C
49. The Effect of Electrolyte pH and Impurities on the Stability of Electrolytic Bicarbonate Conversion
I. Burgers, J. Jónasson, E. Goetheer, R. Kortlever, ChemSusChem, 2024, e202401631.
DOI: doi.org/10.1002/cssc.202401631
48. Effect of Halide Anions on Electrochemical CO2 Reduction in Non-Aqueous Choline Solutions using Ag and Au Electrodes
H. Farahmandazad, S. Asperti, R. Kortlever, E. Goetheer, W. de Jong, ChemistryOpe, 2024, e202400166.
DOI: doi.org/10.1002/open.202400166
47. The Effect of Salts on the CO2 Reduction Product Distribution in an Aprotic Electrolyte
I. Burgers, B. Wortmann, A.C. Garcia, C. Deacon-Price, E. Pérez-Gallent, E. Goetheer, R. Kortlever, ChemPhysChem, 2024, e202400589.
DOI: doi.org/10.1002/cphc.202400589
46. CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO2 electrolyzer
S. Subramanian, J. Kok, P. Gholkar, A.S. Kumar, H.-P. Iglesias van Montfort, R. Kortlever, A. Urakawa, B. Dam, T. Burdyny, Energy & Environmental Science, 2024, 17, 6728-6738.
DOI: doi.org/10.1039/D4EE02004A
45. Direct quantification of electrochemical CO2 reduction products with an improved DEMS setup
D. van den Berg, H.P. Lopuhaä, R. Kortlever, Chem Catalysis, 2024, 4, 8, 101065.
DOI: doi.org/10.1016/j.checat.2024.101065
44. Experimental screening of intermetallic alloys for electrochemical CO2 reduction
D. van den Berg, J.C. Brouwer, R.W.A. Hendrikx, R. Kortlever, Catalysis Today, 2024, 114805.
DOI: doi.org/10.1016/j.cattod.2024.114805
43. Electrochemical CO2 reduction on a copper foam electrode at elevated pressures
N. Girichandran, S. Saedy, R. Kortlever, Chemical Engineering Journal, 2024, 487, 150478.
DOI: doi.org/10.1016/j.cej.2024.150478
42. Challenges and opportunities for CO2 electroreduction from a process systems engineering perspective
R. Dal Mas, A. Somoza-Tornos, M. Perez-Fortes, R. Kortlever, A.A. Kiss, Frontiers in Energy Research, 2024, 12, 1340622.
DOI: doi.org/10.3389/fenrg.2024.1340622
41. Towards Higher NH3 Faradaic Efficiency: Selective‐poisoning of HER Active Sites by Co‐feeding CO in NO Electroreduction
M. Li, S. Saedy, S. Fu, T. Stellema, R. Kortlever, J.R. van Ommen, Catalysis Science & Technology, 2024, 14, 1328-1335.
DOI: doi.org/10.1039/D3CY00996C
40. The effect of surface conditions on the electrochemical CO2 reduction performance of bimetallic AuPd electrocatalysts
D. Van den Berg, B. Izelaar, S. Fu, R. Kortlever, Catalysis Science & Technology, 2024, 14, 555-561.
DOI: doi.org/10.1039/D3CY01411H











2023
39. Electrochemical CO2 capture can finally compete with amine-based capture
D.A. Vermaas, R. Kortlever, Joule, 2023, 7, 2426-2429.
DOI: doi.org/10.1016/j.joule.2023.10.018
38. Optimization and continuous-flow operation of electrochemically mediated selective formate separation by polyvinyl ferrocene/graphene oxide electrodes
S. Polat, R. Kortlever, H.B. Eral, Chemical Engineering Journal, 2023, 475, 146169.
DOI: doi.org/10.1016/j.cej.2023.146169
37. Towards Higher NH3 Faradaic Efficiency: Selective‐poisoning of HER Active Sites by Co‐feeding CO in NO Electroreduction
M. Li, J. Verkuil, S. Bunea, R. Kortlever, A. Urakawa, ChemSusChem, 2023, e202300949.
DOI: doi.org/10.1002/cssc.202300949
36. Identification, Quantification, and Elimination of NOx and NH3 Impurities for Aqueous and Li-Mediated Nitrogen Reduction Experiments
B. Izelaar, D. Ripepi, D.D. van Noordenne, P. Jungbacker, R. Kortlever, F.M. Mulder, ACS Energy Letters, 2023, 8, 3614-3620.
DOI: doi.org/10.1021/acsenergylett.3c01130
35. Electrochemical cell design and performance evaluation of polyvinyl ferrocene/carbon nanotube electrodes for selective formate separation
S. Polat, R. Kortlever, H.B. Eral, Seperation and Purification Technology, 2023, 324, 124554.
DOI: doi.org/10.1016/j.seppur.2023.124554
34. Tuning the Properties of N-Doped Biochar for Selective CO2 Electroreduction to CO
S. Fu, M. Li, W. de Jong, R. Kortlever, ACS Catalysis, 2023, 13, 10309-10323.
DOI: doi.org/10.1021/acscatal.3c01773
33. A Quantitative Analysis of Electrochemical CO2 Reduction on Copper in Organic Amide and Nitrile-Based Electrolytes
A.S. Kumar, M. Pupo, K.V. Petrov, M. Ramdin, J.R. van Ommen, W. de Jong, R. Kortlever, Journal of Physical Chemistry C, 2023, 127, 12857-12866.
DOI: doi.org/10.1021/acs.jpcc.3c01955
32. Design of an elevated pressure electrochemical flow cell for CO2 reduction
A.R.T. Morrison†, N. Girichandran†, Q. Wols, R. Kortlever, Journal of Applied Electrochemistry, 2023, 1-10.
DOI: doi.org/10.1007/s10800-023-01927-7
31. Electrochemical CO2 Reduction on Copper in Propylene Carbonate: Influence of Water Content and Temperature on the Product Distribution
I. Burgers, E. Perez-Gallent, E. Goetheer, R. Kortlever, Energy Technology, 2023, 2201465.
DOI: doi.org/10.1002/ente.202201465
30. Unravelling the Effect of Activators used in The Synthesis of Biomass‐Derived Carbon Electrocatalysts on the Electrocatalytic Performance for CO2 Reduction
S. Fu, M. Li, S. Asperti, W. de Jong, R. Kortlever, ChemSusChem, 2023, e202202188.
DOI: doi.org/10.1002/cssc.202202188
29. Revisiting the electrochemical nitrogen reduction on molybdenum and iron carbides: Promising catalysts or false positives?
B. Izelaar, D. Ripepi, S. Asperti, A.I. Dugulan, R.W.A. Hendrikx, A.J. Bottger, F.M. Mulder, R. Kortlever, ACS Catalysis, 2023, 13, 1649-1661.
DOI: doi.org/10.1021/acscatal.2c04491

28. Nanostructuring Pt-Pd bimetallic electrocatalysts for CO2 reduction using atmospheric pressure atomic layer deposition
M. Li, S. Fu, S. Saeedy, A. Rajendrakumar, F.D. Tichelaar, R. Kortlever, J.R. van Ommen, ChemCatChem, 2022, e202200949.
DOI: doi.org/10.1002/cctc.202200949

27. Electrochemical reduction of CO2 to Oxalic Acid: Experiments, process modeling, and economics
V. Boor, J.E.B.M. Frijns, E. Perez-Gallent, E. Giling, A.T. Laitinen, E.L.V. Goetheer, L.J.P. van den Broeke, R. Kortlever, W. de Jong, O.A. Moultos, T.J.H. Vlugt, M. Ramdin, Industrial & Engineering Chemistry Research, 2022, 61, 14837-14846.
DOI: 10.1021/acs.iecr.2c02647

26. Ultrasound-promoted preparation of polyvinyl ferrocene-based electrodes for selective formate separation: Experimental design and optimization
S. Polat, R. Kortlever, H.B. Eral, Ultrasonics Sonochemistry, 2022, 89, 106146.
DOI: 10.1016/j.ultsonch.2022.106146

25. Surface coverage as an important parameter for predicting selectivity trends in electrochemical CO2 reduction
A.R.T. Morrison, M. Ramdin, L.J.P. van den Broeke, W. de Jong, T.J.H. Vlugt, R. Kortlever, Journal of Physical Chemistry C, 2022, 126, 29, 11927-11936.
DOI: 10.1021/acs.jpcc.2c00520

24. Benchmarking the electrochemical CO2 reduction on polycrystalline copper foils: The importance of microstructure versus applied potential
S. Asperti, R. Hendrikx, Y. Gonzalez-Garcia, R. Kortlever, ChemCatChem, 2022, e202200540.
DOI: 10.1002/cctc.202200540

23. Effect of different alkali metal cations on the oxygen evolution activity and battery capacity of nickel electrodes in concentrated hydroxide electrolytes
A. Mangel Raventos, R. Kortlever, Electrochimica Acta, 2022, 415, 140255.
DOI: 10.1016/j.electacta.2022.140255
2021

22. Electroreduction of CO2/CO to C2 products: Process modeling, downstream separation, system integration and economic analysis
M. Ramdin, B. De Mot, A.R.T. Morrison, T. Breugelmans, L.J.P van den Broeke, J.P.M. Truslers, R. Kortlever, W. De Jong, O.A. Moultos, P. Xiao, P.A. Webley, T.J.H. Vlugt, Industrial & Engineering Chemistry Research, 2021, 60, 17862-17880.
DOI: 10.1021/acs.iecr.1c03592

21. Sn-Based electrocatalyst stability: A crucial piece to the puzzle for the electrochemical CO2 reduction to formate
K. Van Daele, B. De Mot, M. Pupo, N. Daems, D. Pant, R. Kortlever, T. Breugelmans, ACS Applied Energy Letters, 2021, 6, 4317-4327.
DOI: 10.1021/acsenergylett.1c02049

20. Modeling the performance of an integrated battery and electrolyzer system
A. Mangel Raventos, G. Kluivers, J.W. Haverkort, W. de Jong, F.M. Mulder, R. Kortlever, Industrial & Engineering Chemistry Research, 2021, 60, 10988-10996.
DOI: 10.1021/acs.iecr.1c00990

2020
19. In Situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode
E.R. Corson, R. Kas, R. Kostecki, J.J. Urban, W.A. Smith, B.D. McCloskey R. Kortlever, Journal of the American Chemical Society, 2020, 142, 11750-11762.
DOI: 10.1021/jacs.0c01953

18. Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect?
R. Kas, K. Yang, D. Bohra, R. Kortlever, T. Burdyny, W.A. Smith, Chemical Science, 2020, 11, 1738-1749.
DOI: 10.1039/C9SC05375A

2019
17. Electrolyte effects on the electrochemical reduction of CO2
M.M.S. Pupo, R. Kortlever, ChemPhysChem, 2019, 20, 2926-2935.
DOI: 10.1002/cphc.201900680
2017

16. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives
Z. Han†, R. Kortlever†, H.-Y. Chen, J.C. Peters, T. Agapie, ACS Central Science, 2017, 3, 853-859.
DOI: 10.1021/acscentsci.7b00180

15. Local structure and composition of PtRh nanoparticles produced through cathodic corrosion
T.J.P. Hersbach, R. Kortlever, M. Lehtimäki, P. Krtil, M.T.M. Koper, Physical Chemistry Chemical Physics, 2017, 19, 10301-10308.
DOI: 10.1039/C7CP01059A

14. Gastight hydrodynamic electrochemistry: design for a hermetically sealed rotating disk electrode cell
S. Jung, R. Kortlever, R.J.R. Jones, M.F. Lichtermann, T. Agapie, C.C.L. McCrory, J.C. Peters, Analytical Chemistry, 2017, 89, 581-585.
DOI: 10.1021/acs.analchem.6b04228
2016

13. Iridium-based double perovskites for efficient water oxidation in acid media
O. Diaz-Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk, J. Gascon, W.T. Fu, M.T.M. Koper, Nature Communications, 2016, 7, 12363.
DOI: 10.1038/ncomms12363

12. Stabilization of a ruthenium photosensitizer for photocatalytic water oxidation in a liposome bilayer
B. Limburg, J. Wermink, S. van Nielen, R. Kortlever, M.T.M. Koper, E. Bouwman, S. Bonnet, ACS Catalysis, 2016, 6, 5968-5977.
DOI: 10.1021/acscatal.6b00151

11. Oxidation reactions in chromium (III) formate electrolytes at platinum and at a
catalytic mixed metal oxide coating of iridium oxide and tantalum oxide
J.O.H.J. Wijenberg, A.C.A. de Vooys, R. Kortlever, M.T.M. Koper, Electrochimica
Acta, 2016, 213, 194-200.
DOI: https://doi.org/10.1016/j.electacta.2016.07.084

10. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons
R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon, G. Mul, M.T.M. Koper,
Chemical Communications, 2016, 52, 10229-10232.
DOI: 10.1039/C6CC03717H

9. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction
R. Kas, K. Khazzal Hummadi, R. Kortlever, P. de Wit, A. Milbrat, M.W.J. Luiten-Olieman, N. E. Benes, M.T.M. Koper, G. Mul, Nature Communications, 2016, 7,10748.
DOI: 10.1038/ncomms10748
2015

8. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards
CO2 reduction
J. Monzó, Y. Malewski, R. Kortlever, F. J. Vidal-Iglesias, J. Solla-Gullón, M.T.M. Koper, P. Rodriguez, Journal of Materials Chemistry A, 2015, 3, 23690-23698.
DOI: 10.1039/C5TA06804E

7. Reaction pathways and catalysts for the electrochemical reduction of carbon dioxide
R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Journal of Physical Chemistry Letters, 2015, 6, 4073-4082. (featured on the front cover of
the issue)
DOI: 10.1021/acs.jpclett.5b01559

6. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin
J. Shen, R. Kortlever, R. Kas, Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanes, K.J.P. Schouten, G. Mul, M.T.M. Koper, Nature Communications, 2015, 6, 8177.
DOI: 10.1038/ncomms9177

5. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon supported bimetallic Pd-Pt nanoparticles
R. Kortlever, I. Peters, S. Koper, M.T.M. Koper, ACS Catalysis, 2015, 5, 3916-3923.
DOI: 10.1021/acscatal.5b00602

4. Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst
R. Kortlever, C. Balemans, Y. Kwon, M.T.M. Koper, Catalysis Today, 2015, 244, 58-62.
DOI: 10.1016/j.cattod.2014.08.001

3. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions
R. Kas, R. Kortlever, H. Yilmaz, M.T.M. Koper, G. Mul, ChemElectroChem, 2015, 2, 354-358.
DOI: 10.1002/celc.201402373
2014

2. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons
R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, Physical Chemistry Chemical Physics, 2014, 16, 12194-12201.
DOI: 10.1039/C4CP01520G
2013

1. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media
R. Kortlever, K.H. Tan, Y. Kwon, M.T.M. Koper, Journal of Solid State Electrochemistry, 2013, 17, 1843-1849.
DOI: 10.1007/s10008-013-2100-9
2022
bottom of page